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Abstract. In this paper a Finite Element model is used to calculate the magnetic origin forced
vibrations of a squirrel cage induction motor in two different operating conditions. This
model allows to calculate the windings and bars currents, the magnetic forces and motor
structure dynamic response. The Finite Element method is employed to discretize the
electromagnetic field equations and the β - method is used to discretize the time derivatives of
the field and external circuit equations. The magnetic forces acting on the squirrel-cage
induction motor stator are obtained by a method based on the Maxwell’s Stress Tensor. From
it, the harmonic composition of the magnetic forces is evaluated. The second step in this work
consists in proceeding with the mechanical FEM to obtain the natural and forced response of
the stator mechanical structure. The forced vibrations calculations are validated by
measurements.

Keywords: Vibration, Magnetic forces, Maxwell’s stress tensor, Finite element method,
Squirrel-cage induction motor, Resonance.

1. INTRODUCTION

In this paper Finite Element time step model is used to calculate the squirrel cage
induction motor vibratory forced response in two different operating conditions: no load and
full load. Therefore, the finite element electromagnetic model have to be solved twice. This
model calculates the winding and bar currents and the magnetic forces acting on the induction
motor stator teeth. The magnetic forces )(tF  are obtained by a method based on the Maxwell
Stress Tensor.

From the mechanical point of view, the stator structural finite model must to represent the
constraints of these two different situations in terms of boundary conditions, thus for the no
load motor operation are considered free - free stator boundary conditions and for the full load
motor operation are considered null displacements boundary conditions at motor fixation. The
flow chart of “Fig. 1” summarizes the calculation procedures.
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Figure 1 - Flow chart of the whole calculation.

2. ELECTROMAGNETIC SOLUTION

2.1 Electromagnetic model

Using the magnetic potential vector A , the magnetic field in the machine can be written
as:

t
A-JA ∂

∂σµ =1 ×∇××∇ (1)

where µ  is the magnetic permeability, J is the current density, σ is the electrical conductivity

and ∇  is the nabla operator. The current density J in the machine coils is generally unknown,
but may be related to the windings voltages ( )tv :

dt
tddt

tdt(t) )(N)()( Φ++= iLRiv (2)

where (t)v  is the input voltage vector, R is the windings voltages d. c. voltages, L is a

inductance matrix which can contain the end windings inductances, ( )tNΦ  is the linkage

matrix and (t)i  is the windings current vector. The magnetic flux ( )tΦ  is related to the

magnetic potential vector ( )tA .
Equation (1) is discretized by means of two dimensional Finite Element method, and time

derivatives “Eqs. (1) and (2)” are discretized with the β - algorithm (Sadowski et all., 1992).
A large matrix system of equations in the obtained:
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where M and N are respectively, magnetic permeability and electrical conductivity matrix. P
and Q matrix relates field equations and electrical circuit equations. 0 is the null vector
matrix, v is the input voltages related term. t∆  é o passo de cálculo, λ is a factor which
depends of the windings configuration (serial or paralel). The whole system (3) is solved step
by step with respect to time, and the unknowns ( )tA e )(ti  can be calculated.

2.2 Magnetic force calculation

The Maxwell Stress Tensor is used to calculate the magnetic forces, giving a force
density dsdf as follows (Sadowski et all, 1992).





 ⋅ −= nB)Bn

f
(

2

0 2

11
B

ds

d

µ
(4)

where 0µ  is the permeability of the air, n is the vector normal to iron and B is the air side

magnetic induction obtained with 2D Finite Element calculations. Figures 2(a) and 2(b) give
the force distributions (indicated by the arrows) on a stator tooth for two different positions of
rotor. In order to simplify the analysis, this force distribution is then concentrated on a point
in the center of the inner surface of the tooth, for each rotor position. Rotation is taken into
account by means of the Moving Band technique (Sadowski et all, 1992).

Figure 2 - Local force distribution on a tooth. (a) Rotor bar in front of a tooth. (b) Rotor bar
dislocated of 10 degrees in relation to the tooth.

3. MODAL ANALYSIS

Modal analysis is used to extract the natural frequencies and mode shapes of a structure.
Modal analysis is important as a precursor to any a dynamic analysis because knowledge of
the structure's fundamental modes and frequencies can help to characterize its dynamic



response. Additionally, some forced response solution procedures, as the modal superposition
method, requires the results of a modal analysis.

3.1 Numerical modal analysis

The natural frequencies and corresponding vibration modes can be obtained, using
structural Finite Elements Method, by solving “Eq. (5)”:

rr MuKu λ= (5)

where λ  is an eigenvalue; ru  is the corresponding eigenvector; K and M are, respectively,
the rigidity and the mass matrices. Mechanical damping is neglected.

Figure 3 shows the radial stator mode shapes considering free - free boundary conditions.
Figure 4 shows the main stator mode shapes considering null displacements boundary
conditions at fixation of motor.

(a) (b)

Figure 3 - Modal analysis performed to determine the natural response considering free - free
conditions. (a) 1309 Hz mode shape. (b) 1374 Hz mode shape.

(a) (b)

Figure 4 - Modal analysis performed to determine the natural response considering null
displacements boundary conditions. (a) 1283 Hz mode shape (b) 1348 Hz mode shape.

Comparing “Fig. 3(a)” with “Fig. 4(a)” one can notice that the movement restrictions
change the natural frequencies and create a phase shift between the mode shapes. The same is
observed comparing “Fig. 3(b)” with “Fig. 4(b)”. This happens because the structure rigidity
and mass change due to the base fixation.



3.2 Experimental Modal Analysis

The experimental Modal Analysis determines the structure modal model, i.e., its natural
frequencies, modal damping and modal shapes. These quantities are obtained from a group of
measured transfer functions. After measuring the frequency response functions, the modal
parameters are extracted by curve fitting algorithms in time domain or in the frequency
domain (Ewins, 1984). The force and acceleration signs were sampled simultaneously by a
TEKTRONIX 2630 four channels FFT analyzer, with an anti-aliasing filter incorporated.
Figure 5 shows, for the induction motor under analysis, the measured frequency response
functions sum.

Figure 5 - Measured frequency response functions sum at free-free condition (100 Hz per
division).

Table I shows a comparison among the natural frequency values obtained by FEM and
them obtained by Modal Analysis, including the modal damping coefficients obtained by
measurements.

TABLE I. Comparison among the Natural Frequency Values (Hz) Obtained by FEM
and them obtained by Modal Analysis and Modal damping coefficients (%).

Mode FEM
(frequency)

Modal Analysis
(frequency and damping)

Difference

1st - 1002 (1.79%) -
2nd - 1143 (0.71%) -
3rd 1309* 1158 (0.58%) 11.5
4th 1374* 1220 (0.56%) 11.2
5th 2306 1770 (0.84%) 23.2
6th 2313 1940 (0.84%) 16.1
7th 2528 2006 (0.46%) 20.6

Average =16.5

•  Radial Modes

Observing the values one can notice that the difference for the third and forth modes are
11.5 and 11.2, respectively, but increase for the higher modes.



4. MECHANICAL FORCED RESPONSE

4.1 Modal Superposition Method

Using the Modal Superposition Method the forced vibration response of a continuous
structure (i. e. multiple degree of freedom system) to any force can be represented by the
superposition of the various responses in their individual modes, considering each mode to
respond as single degree freedom system. This method requires a natural response calculation
prior to further solution steps.

The general equation of motion can be written as:
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where M , C  and K  are respectively the mass, damping and rigidity matrices, )(tq  is the
displacement vector and )(tF  is the force vector. Using the next transformation matrix:

)()( tt pUq =   or  )()( tt T pUq = (7)

“eq. (7)” can be written in the modal coordinates space. In (7) [ ]NuuuU �

21=  is the
eigenvectors matrix and )(tp is called modal displacement vector. By substituting (7) in (6)

and after multiplying this result by TU , the transpose matrix of U , the following expression
is obtained:
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where:

MUUm T= (9.a)

CUUc T= (9.b)

KUUk T= (9.c)

)()( tt T FUf = (9.d)

It can be verified that matrices m  and k  are diagonal because the eigenvectors are M -
orthogonal. Matrix c  is not generally diagonal but, in practice, only its diagonal terms, which
can be obtained experimentally, are considered. Thus, the motion equation is a single degree
of freedom equations set. Now, considering that the structure is excited by a forces set of the
same frequency hω , but with many magnitudes and phases and assuming a response of the

same form, “Eq. (8)” becomes, in the frequency domain (Javadi et all.,1995):

khiki FGq )(ω= (10)

where )( hikG ω  is a term of the so-called mechanical structure transfer matrix, which can be

expressed as:



( ) ∑
=

























+









−

=
N

r

k
r

i
r

hr
r

h
rr

hik uu

jcm

G
1

2

2
2 1

1

ω
ω
ω

ω

ω (11)

where N  is the number of modes, i
ru  is the modal coordinate in the response position i , k

ru

is the modal coordinate in the excitation position k associated to mode r  and rm , rω  and rc
are respectively the mass, natural frequency and damping coefficient of mode r .

From “Eq. (6)” the frequency response to each harmonic can be calculated taking into
account the viscous damping of each mode. In this paper the damping constant hypothesis
was adopted, this means: the average among the measured damping values was adopted.

4.2 Forced response calculation at no load

The calculated radial force acting on a tooth as a function of time and at no load condition
is shown in “Fig. 6”. The Fourier Analysis of this waveform gives a fundamental harmonic of
120 Hz. The frequency spectrum of the calculated force is given in “Fig. 7”.

Figure 6 - Concentrated radial forces on a tooth as a function of time at no load condition.

Figure 7 - Radial magnetic harmonic composition.

Figures 8 and 9 show, respectively, the calculated and measured accelerations as a
function of the frequency, for the magnetic forces simulated at no load conditions. The
ANSYS mechanical software was used to obtain these results.



Figure 8. Calculated acceleration as a function of frequency. The icon shows the calculation
point.

Figure 9. Measured acceleration as a function of frequency. The icon shows the measurement
point.

Observing the calculated acceleration peak values one can notice that they present
different values from the measured ones, mainly for those frequencies close to vibration mode
shapes with significant longitudinal contribution, which are not foreseen by the numeric 2D
finite elements modal model. This happens because the 2D model only provides the plane X-
Y mode shapes; therefore the forced response just reflects the contribution of those modes
shapes. An example is the 1560 Hz peak which has a very significant contribution of those
modes. That fact can be verified mathematically through “Eq. (7)”. The absence of some
important vibration modes in the mechanical model leads to a smaller ( )hG ω  value and, in
consequence, to a smaller acceleration peak at this frequency.

The 1410 Hz and 1470 Hz side bands that appear in the frequency of 1440 Hz can be
explained by effects of rotor mechanical unbalance, once the difference of 30 Hz corresponds
the rotation motor frequency of 1800 rpm.

4.3 Forced response calculation at full load

The calculated radial force acting on a tooth as a function of time and at full load
condition is shown in “Fig. 10”. The Fourier Analysis of this waveform gives a fundamental
harmonic of 120 Hz. The frequency spectrum of the calculated force is given in “Fig. 11”.



Figure 12 shows the calculated accelerations as a function of the frequency, for the magnetic
forces simulated at full load condition.

Figure 10 - Concentrated radial forces on a tooth as a function of time at
full load condition.

Figure 11 - Radial magnetic harmonic composition

Figure 12 - Calculated acceleration as a function of frequency. The icon shows the calculation
point.

Comparing “Fig. (8)” with “Fig. (12)” we observe that the accelerations spectrum is the
same, since the spectrum of the magnetic forces is not modified. However, the accelerations
magnitudes of “Fig. (12)” are much larger than the accelerations magnitudes of “Fig. (8)”,
since magnetic forces values are very larger at full load operation than at no load operation.

Taking the stator structure forced deformations for 1440 Hz excitation frequency at no
load condition (showed in “Fig. 13(a)”) and for the 1320 Hz excitation frequency at full load



condition (showed in “Fig. 13(b)”), one can conclude that at no load the 12th harmonic (1440
Hz) probably excites the 1374 Hz mode shape and at full load the 11th harmonic (1320 Hz)
probably excites the 1348 Hz mode shape, because the forced deformations are similar to the
mode shapes in both situations.

(a) (b)

Figure 13. Deformations. (a) caused by the 12th harmonic (1440 Hz) of the magnetic forces at
no load. (b) caused by the 11th harmonic (1320 Hz) of the magnetic forces at full load.

5. CONCLUSIONS

The local radial magnetic forces in the stator teeth is calculated by a method based on the
Maxwell Stress Tensor for two load conditions: no load and full load. Mechanical Finite
Element method is employed to obtain the natural response of the stator mechanical structure
considering different boundary conditions related to the load condition. Mechanical Finite
Element calculations give, finally, the deformations and accelerations for no load and for full
load conditions. A good concordance between the calculated accelerations and the measured
ones at no load condition is obtained. The operation conditions highly influence the vibrations
magnitudes. The reasons for the main resonance peaks occurrence in both situations are
explained.
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